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puted analytically in the incipient post-buckling regime. Of particular interest is the variation
of the first mode frequency as the load is increased through the buckling threshold. The
loading type is found to have a crucial importance as the first mode frequency is shown to
behave singularly in the zero thickness limit in the case of prescribed axial displacement,
whereas a regular behavior is found in the case of prescribed axial load.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

External loads and boundary conditions are known to play a key role in the statics and dynamics of elastic structures. In
the analysis of vibrations of a string or a rod, external loads have a direct influence on the response of the system, e.g.
tension in a string raises its natural frequency whereas compression in a rod lowers its natural frequency. Nonlinear effects
become important when external loads not only change the vibration response of the rod but also alter its overall stability
through buckling. Several studies have investigated dynamical responses of post-buckled elastic rods [1,2]. Vibrations and
resonance are also used to destabilize buckled beams [3,4]. In a classical buckling experiment with clamped boundary
conditions there are two ways to apply the loading: the distance between the two ends may be imposed (and we refer to
this situation as prescribed axial displacement or rigid loading), or the axial force pushing the two ends together may be
imposed (and we refer to this situation as prescribed axial load or dead loading). In fact due to the intrinsic elasticity of any
loading device, one is never exactly in a pure dead or rigid loading situation [5]. For equilibrium the response of the system
is the same under both loadings, axial force and axial displacement being conjugate variables in the energy of the system.
But as soon as stability and vibrations are considered the response of the system strongly depends on the loading type, with
rigid loading setups typically being more stable than dead loading ones [6].

Here, we consider the problem of in-plane vibrations of a post-buckled Kirchhoff extensible unshearable elastic rod with
clamped boundary conditions under rigid and dead loadings. First, we study the post-buckled equilibrium configurations of
the rod. We then focus on the small-amplitude vibrations around the equilibrium state and look how the first mode
frequency evolves as the rod goes into the post-buckling regime, comparing the rigid and dead loading cases.
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Fig. 1. Clamped-clamped rod buckled in the (x,y) plane. Either the end-shortening D or axial load P is controlled. The point A in the reference configuration
moves to point A’ in the deformed configuration, introducing horizontal U < 0 and vertical V displacements. The origin O is at the left end of the rod.

We recall the Kirchhoff model for elastic rods in Section 2 and derive vibrations equations in Section 3. We then compute
analytically the incipient post-buckling equilibrium solution in Section 4 and the first mode vibration around this equilibrium
solution in Section 5, in the rigid loading case (Section 5.1) and in the dead loading case (Section 5.2). Discussion (Section 6)
and conclusion (Section 7) follow.

2. Model

We consider an elastic rod with a rectangular cross section of width b and thickness h, total length L and arc length S in
its unstressed reference state, see Fig. 1. In this state the rod lies along the ex—axis, from the origin O = (0, 0, 0) to the point at
(L,0,0). The position vector of the center of the rod cross section is noted R(S) and we have R(0) = (0,0, 0) and R(L) = (L, 0, 0)
in the reference state.

2.1. Kinematics

We use the special Cosserat theory of rods [7] where the rod can suffer bending and extension, but no shear. We work
under the assumption that the rod cross section remains planar (and rectangular) as the rod deforms and use a set of three
Cosserat directors (dq(S), d2(S), d3(S)) embedded in each cross section: d; is perpendicular to the section plane, d; is along
the small span (of length h) of the section, and ds is along the wide span (of length b) of the section. In the undeformed
state, dq(S) = ey, dx(S) = ey, and d3(S) = e,. We only consider deformed states that are (i) planar (where the rod center line
R(S) lies in the (x,y) plane, the rod being bent along its small span h) and (ii) twist-less (where the director d3(S) = e;). Note
that, in the presence of extension, S may no longer be the arc length of the curve R(S) in the deformed state. We introduce
the extension e(S) with:

R(SEAR/dS = (1+e(S)d;. (1)

In the absence of extension (e = 0) the director d; is the unit tangent to the centerline R(S) = (X(S), Y(S), Z(S)). We introduce
the angle 9(S) to parametrize the rotation of the (d,d;) frame around the e, = d3—axis:

cos 0(S) — sin 0(S)
d{(S)=| sin 6(S) and dyS)=| cos o(S) . (2)
0 €x.ey.ez 0 €x.ey.e;

2.2. Dynamics

We use Kirchhoff dynamical equations for elastic rods [7], where the stresses in the section are averaged to yield an
internal force N(S) and an internal moment M(S). These internal forces and moments are the loads exerted on the section at
S by the part of the rod at S > S. In the absence of body force and couple, the linear and angular momentum balances read

N'(S,T) = pAR(S, T), (3)

M'(S,T)+R/(S,T) x N(S,T) = plé(S, T), (4)

where ()’défa/dS, (')défa/aT, T is the time, p the density of the material, A the area of the cross section (in the present case

A=hb), and I the second moment of area of the cross section (in the present case I = h3b/12). As we are only interested in
low frequencies we neglect the rotational inertia, that is the left-hand side of (4) will be zero.
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2.3. Constitutive law

We use the standard linear constitutive relationship relating the bending strain K(S)défe’(S) to the bending moment
M3 défM . d3:
M3 = Elx, (5)
where E is Young's modulus. Note that « is not the curvature in general. The extension constitutive law relates the tension
N - d; to the extension e:

Ny cos 9+Ny sin = EAe (6)

2.4. Equations in component form

In the planar case considered here, we have Z(S,T) =0, N(S,T) =0, Mx(S,T) =0, and My (S,T) = 0 v (S, T) and the nonlinear
equations for the six remaining unknowns are

X'=(1+e)cos 0, (7a)

Y =(1+e)sin 0, (7b)

0" = M/(EI), (7¢)

M’ =(1+e)(Nx sin 6—N, cos 0), (7d)
N, = phbX, (7e)

N, =phbY, (7)

where M = M, = M3 and the extension e is given by Eq. (6).

2.5. Dimensionless variables

We scale all lengths with L, time with %t

a parameter

12./phb/(EI), forces with EI/L?, and moments with EI/L. This naturally introduces

ar I 1 (h\?
=) ®

which takes small values in the present case of slender rods. Dimensionless variables will be written lowercase, e.g. sdéfS/L,
x%x /L, or mdéfML/(EI). The constitutive relation (6) reads
e=n(nx cos 6+ny sin 6). 9)

The case 5 > 0 corresponds to extensible rods, the case n =0 to inextensible rods. The particular case » = 0 has been studied in
detail in [8] and we will assume for the present study that 7 % 0 and only briefly comment on the inextensible case.

3. Small-amplitude vibrations around equilibrium configurations

The system of equations (7) in a dimensionless form reads

X'(s,t) = (1+nny cos 6+nny sin 6)cos 0, (10a)

Y'(s,t)=(1+nny cos 6+nny sin O)sin 6, (10b)

o'(s,t)y=m, (10c)

m'(s,t) = (1+nny cos 6+nny sin O)(ny sin 6—ny cos 0), (10d)

(s, t) =X, (10e)

ny(s,6)=J. (10f)

We consider a rod subject to clamped-clamped boundary conditions:

x(0,t)=0 (11a)

y0,=0, y(1,t)=0, (11b)
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0(0,t)=0, 6(1,t)=0. (11¢)

The rod is subject to either dead or rigid loading. In the rigid loading setup we control the end-shortening d, that is we
impose the additional boundary condition

x(1,t)=1—d, (12)

and the axial load p(t) = —ny(1,t) is unknown and varying with time. In the dead loading case, a constant axial load p is

imposed, replacing (12) by

n(1,t)=p, (13)

while the end-shortening d(t) becomes a time-varying unknown. Note that in both cases the transverse displacement

¥(1,t)=0 being fixed, the shear load q(t)=ny(1,t) is a time-varying unknown. For a given ratio » we first look for

the equilibrium configuration (X, Ye, 0, Me, NMyxe, Nye), solution to (10) with X, =0 and y, =0, and then we look for small
amplitude vibrations around the equilibrium configuration, that is we set

X(S, £) = Xe(S) + X(s)elt, (14a)
V(8. 6) =Y,(5)+8y(s)e™”, (14b)
0(s, t) = 00(s)+ 50(s)el!, (14c)
m(s, t) = me(s)+om(s)elt, (14d)
1x(S, t) = Nye(S)+ ST1x(S)elt, (14e)
1y(S, ) = Nye(s) + STy (s)e'”, (14f)

where § < 1 is a small amplitude parameter, and w is the frequency of the vibration. Inserting (14) into (10) and keeping only
linear terms in 5, we obtain equations for the spatial modes (X, ¥, 0,7, iy, Ty):

X'(S)= —(1+nnye COS G +nhye SIN )0 Sin G +€ COS O, (15a)
V'(S) = (1+n3nxe COS O +nye SiN 0.)0 COS O +€ Sin O, (15b)
6'(s)=m, (15¢)

M'(S) = (1+nMxe COS O +nMye SIN Oe)(Mx SIN O — T, COS O +0O[(Nxe COS Qe +MNye SIN O])
+€(Nye SIN O —1ye €OS be), (15d)
M,(5) = —’X, (15e)
,(5) = —’y, (15f)

where we introduced

€ =7(Mx COS Oe+T1y Sin O —O[Nye SIN O —Nye COS Be]). (15g)

The boundary conditions on the spatial modes are

X(0)=0, * (17a)
y0)=0, y1)=0, (17b)
0(0)=0, 0(1)=0. (17¢)

with * replaced by x(1) = 0 in the rigid loading case, and by 7nx(1) = 0 in the dead loading case. The 6D system (15) with the
six boundary conditions (17) is a well-defined generalized eigenvalue problem, with eigenvalue w. For computational
purpose, we normalize the linear solution of this problem by imposing the condition

M°(0)+113(0)+115(0) = 1. (17d)

4. Post-buckled equilibrium configurations

In order to obtain the vibrations in the post-buckling regime we first have to calculate the post-buckled equilibrium
solution. As the end-shortening or the axial load is increased from zero, the rod first experiences axial compression until
eventually buckling is reached and flexural deformations kick in. We have shown in [8] that the buckling threshold p* for an
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extensible rod with clamped boundary conditions is given by p*(1 —np*) = 42, that is
— _ 2
pr = 1=V 16 \/12’716”'7 =427 +162%n+ O (). (19)

We now study the equilibrium solutions in the post-buckling regime. Equilibrium equations are obtained by setting X =0
and y =0 in system (10). At equilibrium the internal force vector is found to be uniform along the rod and we write:
Nxe(S) = — P, and nye(s) = —q, Vs. System (10) is then reduced to

X, =(1—yp, €OS B —nq, Sin ) cos G With x.(0) =0, (20a)
Yo =(1—np, €OS G —nq, Sin &) sin 6. with y,(0)=0=y,.(1), (20b)
6, =(1—3p, €OS Bo—nq, SIN Ge)(— P, SIN O +q, COS 6,) With e(0) =0 =0,(1). (20c)

For the first buckling mode, we are looking for an equilibrium shape whose curvature is symmetric about the middle point
s=1/2, hence we require m,(s—1/2) to be an odd function. From (10d) the function ny,.(s—1/2) has to be odd as well,
eventually imposing g.=0.

We address the behavior of the solutions after, but close to, buckling. Therefore, we expand the variables in powers of ¢, a
small parameter measuring the distance from buckling:

Oe(S) = £01(5)+ £202(5) + £203(5) + O(e™), (21a)
Xe(S) = Xo(S) +€X1(5) +£2Xa2(5) + £2X3(5) + O(e?), (21b)
Ye(S) = ey1(5)+€%Y5(5) +€%y3(5)+ O(e™), (210)

De = Do+ €Dy +&°py +€3p3 + O(e%). (21d)

We substitute these expansions in the equilibrium equations (20), which have to be satisfied to all orders in e. The solution
up to order 3 reads

51622 —3p,

Oe(S)=¢€ sin 2zs+e¢ o5z

cos?(2zs) sin (2zs)+O(e?), (22a)

20 —21Po)?(4ns — sin 4xs)+2xsn(167% —3py) +0

4
T62(1—20py) (). (22b)

Xe($)=5(1—npo) —

& sin %(zs)

2ne 4
Ve(S) = E(1 — CoS 27S)— m(cu +Cy €OS (278) + Cy €OS (475))+ O (%), (22¢)
1672 —3p, . 1—/1-167%y
_ 2 0 A4 _
De=Do+e€ 8(1—21py) +0(e*)  with py = % , (22d)

where ¢, =7 —225py — 32572, ¢y = —6(142npy—3252?), and ¢,y = —3 —6ypy+ 96,72, From (9) we recover the extension:

1672 -3 1 .
ee(s)= —npg _n<8(1ﬂ——2'7153 —5Po 51112(2;15)) £ +0(e%). (23)

Egs. (20) were solved in the absence of any condition on the axial loading, and consequently solutions (22) is valid for both
dead and rigid loadings. From (22b) and (22d) we eliminate ¢ and write the relation:

2 —3ypy — 167>

de=11Po = —g,2 —3p,

(pe_p0)+0<(pe_p0)2> (24)
between the axial load p. and the axial displacement d. =1—x.(1). In dead loading the load p. is prescribed and the
resulting end-shortening d. is computed from (24). Respectively in rigid loading the end-shortening d, is prescribed and the
resulting axial load p, is computed from the same Eq. (24). We therefore see that the equilibrium solution does not depend
on the loading type.

5. Vibrations around post-buckled equilibrium configurations

We expand all modal variables (x,y,0,m,7x,n,) and the frequency « in powers of e. For instance we have w = wg+
w1+ 2wy +w3 +O(e*), and so on. We restrict the study to the fundamental frequency which is zero at buckling;
consequently we set wg = 0. We solve Egs. (15) with boundary conditions (17), using the equilibrium solution (22). Contrary
to the equilibrium solution we show that the vibration solution strongly depends on the loading type.
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5.1. Vibrations in the rigid loading case

In the rigid loading case we use the boundary condition X(1) = 0 in (17). To order ° we solve:

ﬁ;(o _o. (25b)
Yo +47°y=0 with y5(0) =¥(1) =¥(0) =y(1)=0. (230)

The first two equations describe the longitudinal mode and are decoupled from the third one which is associated with the
transverse mode. The solution is

Xo(s)=0, (26a)
fxo(s) =0, (26b)
Vo(s) =Ao(1— cos 2xs). (26¢)

where Ag is the linear small amplitude of the vibration mode. To order ¢' we have to solve:
X, = iy — 27Ao 11‘72””;’0 sin2(2zs)  with %1(0) = 0 =%y (1), (27a)

—nPo
fl,y =0, (27b)
yi+47°y; =0 with y;(0)=y;(1) =y,(0)=y;(1)=0. (27¢)
The transverse mode solution

V1(s)=A1(1— cos 2zs) (28)

is a multiple of ¥,(s), and we set A; =0 without loss of generality (this amounts to redefining &, see also [9]). For the
longitudinal mode, (27b) requires 7,;(s) to be constant and we note 7y (S) = ¢;;x;. We then integrate (27a) and ask for the
boundary condition X;(1) =0 to be met. This yields

1Cnx1 (1 —=nPg) — 7Ao(1 —21py) =0, (29)

which typically determines c,,;. We nevertheless remark that in the inextensional case =0 one concludes that Ag =0,
which eventually prevents the wg =0 mode to exist, see [8] for more details. In the extensional case we have

1—2np, sin 4zs

X1(s)=4Ao T, 4

(30a)

a1 (5) = Ag 2P0 T (30b)

We note that the 1/5 singularity appearing in (30b) eventually leads to the frequency w to be singular as n— 0, see (37). This
singularity has its roots in the boundary condition x;(1) =0, that is prescribed axial displacement. We show in Section 5.2
that in the case of prescribed axial load no such singularity is present. To order ¢, longitudinal mode equations are

X, =nfl, With X(0) = 0=%5(1), (31a)
M, =0. (31b)
and their solution is
X,(5)=0, (32a)
My(s) = 0. (32b)
For the transversal mode, equations are
Yy +47°Y5 =, oS 6a5+C; oS 2as+c, with ¥,(0) =y,(1) =y5(0) =¥,(1) =0, (33)
with
Co = —5ar*Ag L= 21Po (34a)
1-npg
Ao

s {22%[1 -1 (222 + po — 2072yp, — 647"n)]

= a1 =182 +po)]
—nw?[1—n(167° +po — 127°np — 327* )], (34b)



968 S. Neukirch et al. / Journal of Sound and Vibration 333 (2014) 962-970

(a) (b)
Q
80 10
8
60
6
40
4
20 )
0 Y(L/2)/h O Y(L/2) /L
0 2 4 6 8 10 12 000 005 010 0.5 020 025 0.00

Fig. 2. Post-buckling evolution of the first frequency of system (10) as a function of the equilibrium height of the arch Y.(L/2). The physical frequency is
Q=w/z, where 7 is defined in Section 2. Plain curves (black) have been computed by numerically solving system (15) with boundary conditions (17) and
L =40 h. Straight lines (red) are first-order approximations given in Section 5. (a) Rigid loading case. The equilibrium height of the arch Y.(L/2) is plotted in
h units. The (red) approximation is given by formula (37) and is only valid when the equilibrium height of the arch Y.(L/2) is less than twice the thickness
h. (b) Dead loading case. The equilibrium height of the arch Y.(L/2) is plotted in L units. The (red) approximation is given by formula (41). Note that for
L=40h, Ye(L/2)/L=0.3 is equivalent to Y.(L/2)/h = 12. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

¢, = Aowi[1 —n(4x* +po)l. (340)
where we have used the identity pZ = (p, —47?)/n, see (22d). Boundary condition ¥,(1) = 0 requires ¢ = 2¢,, that is

W 27* 1—n(222% 4 po) +47*n*(167* +5p,)
' 3p 1—n(16x2+pg)+4x2? (872 +3py) ’

(35)

where we clearly see the singular »— 0 limit. Finally we express o = w1e+O(e?) as a function of the height of the arch at
equilibrium: y,(1,/2). From (22c) we obtain y,(1/2) = 4ze/py +O0(>), which gives us a measure of e. Hence we have

Dow
w= Zﬂ‘ Ye(1/2) +0(€?). (36)
Using (22d) and expanding for small ; yields
2
w= \/3;;:2;/6(1/2) [1+72°n+0(*)]+0(yz(1/2)). (37)

Noting that /2/37% ~ 8.058, we recover the numerical interpolation given in Eq. 22 of [8]. In Fig. 2 we compare this linear
approximation w ~ 2z%+/2Y.(L/2)/h with the numerical solution of system (15) and we see that it is only valid when the
equilibrium height of the arch Y,(L/2) is less than about twice the thickness h.

5.2. Vibrations in the dead loading case

In the dead loading case the solution (22) to the equilibrium problem is the same as in the rigid loading case, but the
solution for spatial modes differs and we show that the singularity 1/7 no longer exists. We use the boundary condition
(1) =0 in (17). To order &° the solution is the same as before, given by (26). To order ¢! the transverse mode is also still
given by (28), but the solution for the longitudinal mode is now

1—2npg sin 4zs—A4xns

X1() = Ag g DO T,

(38)

My () =0. (39)

We see that X;(1) # 0, that is the axial displacement at s=1 is no longer fixed. Moreover the 1/5 singularity present in (30b)
no longer exists. To order ¢* longitudinal equations and solutions (32) stay the same. For the transverse mode ¥,(s) the
equation has the same structure as (33) but with a different ¢; coefficient. Boundary condition ¥5(1) = 0 here yields the non-
singular:

474 1-29(162%—
2 4nt U Po)
1T T3 1 (1622 + o) + 4n2n2(872 + 3py) (40)
We finally arrive at the expansion
2 3
0= %ye(l/Z) [1+22%+0(r%)] +O(¥2(1/2)) (41)

In Fig. 2 we compare this linear approximation o =~ (273 /+/3)Y.(L/2)/L with the numerical solution of system (15).
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Fig. 3. Post-buckling evolution of the first frequency of system (10) as a function of the axial load p. or axial displacement d.. The load p, and the
displacement dy = p, at buckling are used as references. The plain (black) curves have been computed by numerically solving system (15) with boundary
conditions (17) and L =40 h, the lower (resp. upper) curve being for the dead (resp. rigid) loading case. Dashed (red) curves are analytic approximations,
given by (42) in the rigid loading case and (43) in the dead loading case. The physical frequency is 2 = w/z, where 7 is defined in Section 2. Note that for
L=40 h, p, —p, = 6 approximately corresponds to Ye(L/2)/h =12 or Y¢(L/2)/L = 0.3. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

6. Discussion

The 1/5 singularity present in the rigid loading case can be analyzed as following. As the rod extremities are strongly held
by clamps, the vibrations have to be confined to the rod. Just after buckling the rod is nearly flat and the first mode
necessitates extensional deformations to develop. Consequently as the thickness h (or ;) is reduced, the system gets stiffer
and the mode frequency is rapidly rising. In the limit »—0 the mode ceases to exist at buckling.

In Fig. 3 we plot first mode frequencies as functions of the axial load p. or axial displacement d, in both rigid and dead
loadings. From (37), (22c), and (22d) in rigid loading we have

2
~ , 42
0= /—_3”1 ~/Pe —DPo (42)

and from (41), (22c), and (22d) in dead loading we have
®~2m\/2/3/DPe—Do- (43)

We see that the frequency in the rigid loading case is much higher than in the dead loading case. This difference can
be analyzed as following. As said above, in the rigid loading case the first mode necessitates extensional deformations
to develop, resulting in a high frequency when 7 is small. In the dead loading case axial movement of the right clamp is
possible and the first mode is able to develop without having so much to rely on extensional deformations. The system is
then comparatively softer and its frequency lower.

7. Conclusion

We have considered an unshearable elastic rod bent in the plane, undergoing flexural and extensional deformations but
no twist. We have calculated analytically the post-buckled equilibrium shape of such a rod together with the first vibration
mode around this shape. We have studied the dependence of the frequency of this mode with the rod slenderness ratio h/L
and we have shown that in the rigid loading case the frequency becomes singular as h/L— 0, while in the dead loading case
the singularity does not exist.
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